
W H Y D O W E D O D A T A B A S E S E A R C H E S ?

O R I G I N A L P R E S E N T A T I O N B Y D R . D A V I D P A G E , 2 0 1 2

U P D A T ED B Y A D R I A N S T A R Z Y N S K I , 2 0 2 3

Introduction to Database
Searching

Target Audience

1. Those of you that want to learn to write your own
searches.

2. Those of you that simply want to learn to use
searches that exist and make simple modifications.

Basic Background Knowledge

 Most of the information in an EMR is stored in a
database in what are called “Tables”

 This is to allow easy retrieval and use of the
information

 OSCAR uses MariaDB (MySQL) as its opensource
database

 Essentially, an EMR is just an interface to the
database tables

Agenda for tonight

1) The Basics (a bit of theory)

2) Do it Yourself (some hands on)

3) Report by Templates (the cadillac of searches)

First the theory……

What is a table?

doctor# doctor_name phone_no hair_color

103 Dr Smith 6048585756 brown

244 Dr Ross 6048586778 grey

167 Dr Voth 6048587523 brown

177 Dr Viljoen 6048583458 blond

doctors

What is a table?

doctor# doctor_name phone_no hair_color

103 Dr Smith 6048585756 brown

244 Dr Ross 6048586778 grey

167 Dr Voth 6048587523 brown

177 Dr Viljoen 6048583458 blond

doctors

Columns

What is a table?

doctor# doctor_name phone_no hair_color

103 Dr Smith 6048585756 brown

244 Dr Ross 6048586778 grey

167 Dr Voth 6048587523 brown

177 Dr Viljoen 6048583458 blond

doctors

Rows

What is a table?

doctor# doctor_name phone_no hair_color

103 Dr Smith 6048585756 brown

244 Dr Ross 6048586778 grey

167 Dr Voth 6048587523 brown

177 Dr Viljoen 6048583458 blond

doctors

Fields

MMSE

 I want you to remember these three words, and I will
later ask you to repeat them to me…..

SELECT

FROM

WHERE

and a few others……

SQL SYNTAX

SELECT {column name}

FROM {table name}

WHERE {= <> > < >= <=}

AND {both are true}

OR {one or other or both}

LIMIT 20

Other syntax:
BETWEEN , NOT BETWEEN, LIKE, NOT LIKE, IN, NOT IN,

ORDER BY, GROUP BY, DISTINCT

Want to know who the doctors are?

doctor# doctor_name phone_no hair_color

103 Dr Smith 6048585756 brown

244 Dr Ross 6048586778 grey

167 Dr Voth 6048587523 brown

177 Dr Viljoen 6048583458 blond

doctors

SELECT doctor_name FROM doctors

Want to know who the doctors are?

doctor# doctor_name phone_no hair_color

103 Dr Smith 6048585756 brown

244 Dr Ross 6048586778 grey

167 Dr Voth 6048587523 brown

177 Dr Viljoen 6048583458 blond

doctors

SELECT doctor_name FROM doctors

Want to see a row?

doctor# doctor_name phone_no hair_color

103 Dr Smith 6048585756 brown

244 Dr Ross 6048586778 grey

167 Dr Voth 6048587523 brown

177 Dr Viljoen 6048583458 blond

doctors

SELECT doctor#, doctor_name , phone_no, hair_color
FROM doctors
WHERE doctor# = 103

OR

SELECT * FROM doctors WHERE doctor# = 103

Want to see a row?

doctor# doctor_name phone_no hair_color

103 Dr Smith 6048585756 brown

244 Dr Ross 6048586778 grey

167 Dr Voth 6048587523 brown

177 Dr Viljoen 6048583458 blond

doctors

SELECT doctor#, doctor_name , phone_no, hair_color
FROM doctors

WHERE doctor# = 103
OR

SELECT * FROM doctors WHERE doctor# = 103

Want to know who the doctors are with brown
hair?

doctor# doctor_name phone_no hair_color

103 Dr Smith 6048585756 brown

244 Dr Ross 6048586778 grey

167 Dr Voth 6048587523 brown

177 Dr Viljoen 6048583458 blond

doctors

SELECT doctor_name
FROM doctors
WHERE hair_color = brown

Want to know who the doctors are with brown
hair?

doctor# doctor_name phone_no hair_color

103 Dr Smith 6048585756 brown

244 Dr Ross 6048586778 grey

167 Dr Voth 6048587523 brown

177 Dr Viljoen 6048583458 blond

doctors

SELECT doctor_name
FROM doctors
WHERE hair_color = brown

So far so good?

 Often information is stored in more than one table
with a “key” that connects the two tables

 This is to save duplication of information in the
different tables

Example of two tables

resident# resident_name hair_color doctor# address postal_code phone_no

345 Mike brown 103 Courbould Ave v2r 2r3 6048245634

456 Cathy red 244 Mary St v2r 4t1 6048247933

553 Jake blond 103 Edwards St v2r 5w7 6048248332

521 Mary brown 167 Courbould Ave v2r 2r3 6048245634

residents

doctor# doctor_name phone_no hair_color

103 Dr Smith 6048585756 brown

244 Dr Ross 6048586778 grey

167 Dr Voth 6048587523 brown

177 Dr Viljoen 6048583458 blond

doctors

Another way of looking at it

doctor#

doctor_name

phone_no

hair_color

resident#

resident_name

hair_color

doctor#

address

postal_code

phone_no

doctors residents

Want to know which residents are working with
brown haired doctors?

doctor#

doctor_name

phone_no

hair_color

resident#

resident_name

hair_color

doctor#

address

postal_code

phone_no

doctors residents

SELECT resident_name
FROM residents, doctors
WHERE hair_color = brown

Why won’t this work?

 You need to LINK the tables

 And you need to give each column a

UNIQUE name

Otherwise, the computer will produce and infinite
number of permutations and combinations……

Want to know which residents are working with
brown haired doctors?

doctor#

doctor_name

phone_no

hair_color

resident#

resident_name

hair_color

doctor#

address

postal_code

phone_no

doctors residents

SELECT residents.resident_name
FROM residents, doctors
WHERE doctors.hair_color = brown
AND resident.doctor# = doctors.doctor#

resident# resident_name hair_color doctor# address postal_code phone_no

345 Mike brown 103 Courbould v2r 2r3 6048245634

456 Cathy red 244 Courbould v2r 2r3 6048245634

553 Jake blond 103 Courbould v2r 2r3 6048245634

521 Mary brown 167 Courbould v2r 2r3 6048245634

residents

doctor# doctor_name phone_no hair_color
103 Dr Smith 6048585756 brown

244 Dr Ross 6048586778 grey

167 Dr Voth 6048587523 brown

177 Dr Viljoen 6048583458 blond

doctors

SELECT residents.resident_name FROM
residents, doctors

WHERE doctors.hair_color = brown
AND resident.doctor# = doctors.doctor#

Aliases- a convenient abbreviation

SELECT r.resident_name
FROM residents r, doctors d
WHERE d.hair_color = brown
AND r.doctor# = d.doctor#

SELECT residents.resident_name
FROM residents, doctors
WHERE doctors.hair_color = brown
AND resident.doctor# = doctors.doctor#

Enough theory, lets do some hands on

 From appointment screen in OSCAR

 Administration

 Report

 Query by Example

show tables;
This will display all the tables in OSCAR

Commonly used tables in OSCAR

 demographic
 eChart
 dxresearch
 drugs
 measurements
 appointment
 billing
 billingmaster
 provider
 preventions

describe {table};

This will list the columns in that particular table
(e.g. demographic, look at a patients demographics page first)

describe demographic;

Lets ask some questions

 First let us see what is in the demographic table
(refer to the demographic table property handout)

select *

from demographic

limit 20

(* = select all)

select first_name, last_name

from demographic

limit 20

Let us find the patients older than 100!

select first_name, last_name

from demographic

where year_of_birth < 1911

limit 200;

Let us filter out the 0000-00-00

select first_name, last_name

from demographic

where year_of_birth < 1911

and year_of_birth <> 0000

limit 200;

Lets only look at the active patients

select first_name, last_name

from demographic

where year_of_birth < 1911

and year_of_birth <> 0000

and patient_status = 'AC’

limit 200;

Doing Arithmetic with selected Information

SYNTAX

* / - +

MAX MIN

SUM

AVG

COUNT

Want to find your oldest patient?

select min(year_of_birth)

from demographic

where year_of_birth <>0000

and patient_status = 'AC';

Then

select first_name, last_name

from demographic

where year_of_birth = 1904

and patient_status = 'AC';

Some more interesting searches…

1) What is the average year of birth of our patients?

select avg(year_of_birth) from demographic where patient_status = 'AC';

2) What is the sum of our patients' year of births?

select sum(year_of_birth) from demographic where patient_status = 'AC';

3) How many patients are listed as active in our server?

select count(demographic_no) from demographic where patient_status = 'AC';

Now lets try using two tables…

 Let us list all our patients that have been entered into the
Disease Registry with CHF (ICD 428)

(refer to the dxresearch table properties)

select demographic_no

from dxresearch

where dxresearch_code = 428;

This works, but we want names….

select demo.first_name, demo.last_name

from dxresearch dx, demographic demo

where dx.dxresearch_code = 428

and dx.demographic_no = demo.demographic_no;

Now to the Cadillac of searches,
“Report by Templates”

This is a Query by Example engine with two
differences:

1. It allows easy export of the results to a
spreadsheet like Excel

2. It allows “variable inputs”

Basic structure of a Report by template

<report title="Title" description="Description of what the report does" active="1">

<query>

Place query here
</query>

<param id="name" type="(text)(list)(date)" description="Description">

</param>

</report>

This is the type of input

E X A M P LE S O F H O W TO U S E TH E S E 3 P A R A M
F IE LD TYP E S IN YO U R R B T (A F TE R

< / Q U E R Y>)

TE X T

LIS T

D A TE

Param Types Examples

LIST

AND

be.code_date >= DATE_SUB(CURDATE(),{intervalday}) AND
be.code_date <= CURDATE()

ORDER BY
be.code_date DESC;

...

<param id="intervalday" type="list" description="Number of days:">
<choice id="interval 30 day">2</choice>
<choice id="interval 60 day">10</choice>

<choice id="interval 90 day">30</choice>
<choice id="interval 120 day">100</choice>

<choice id="interval 1000000 day">ALL</choice>
</param>

TEXT

<param id="query" type="text" description="Query">

</param>

DATE

<param id="dateFrom" type="date" description="dateFrom">

</param>

The date format is YYYY-MM-DD

So this is how the Disease Registry search would
look:

<report title="Disease Registry lookup" description="Search for patients in the
Disease Registry by ICD 9 code" active="1">

<query>

select demo.first_name, demo.last_name

from dxresearch d,demographic demo

where d.dxresearch_code = 428

and d.demographic_no = demo.demographic_no;

</query>

<param id="searchtext" type="text" description="ICD 9 code"> </param>

</report>

Paste in Query

So this is how the Disease Registry search would
look:

<report title="Disease Registry lookup" description="Search for patients in the Disease Registry
by ICD 9 code" active="1">

<query>

select demo.first_name "First Name", demo.last_name "Last Name"

from dxresearch d,demographic demo

where d.dxresearch_code = {ICD9}

and d.demographic_no = demo.demographic_no;

</query>

<param id=“ICD9" type="text" description="ICD 9 code"> </param>

</report>

Variable text input
id-can be any name
you choose

So how do you load Report by Templates??

Method 1: Standard upload

Report by Template is stored as a text (.txt) file.

 Administration/Reports/Report by Template
 Add template/Browse for file/Upload and Add

Method 2: Overwriting existing template

What I do most of the time is upload a bunch of “Blank”
Report by templates, and then I will copy the text file and

paste over the “Blank”.

Why do this?

1. Because otherwise you have no way of ordering your
Reports (they come in sequential)

2. This way you can copy an existing Report and duplicate it
so that you can make modifications to it

Wrap up

Hopefully, you now know:

 How to list the Tables

(show tables;)

 How to see the columns in a particular Table

(describe {table name};)

 How to retrieve data from a Table
(Select {column name} From {table name} Where {filter};)

 How to insert the Query into a Report by Template

 How to upload and edit “Reports by Template”

The End

	Slide 1: Introduction to Database Searching
	Slide 2: Target Audience
	Slide 3: Basic Background Knowledge
	Slide 4: Agenda for tonight
	Slide 5: First the theory……
	Slide 6: What is a table?
	Slide 7: What is a table?
	Slide 8: What is a table?
	Slide 9: What is a table?
	Slide 10: MMSE
	Slide 11: SQL SYNTAX
	Slide 12: Want to know who the doctors are?
	Slide 13: Want to know who the doctors are?
	Slide 14: Want to see a row?
	Slide 15: Want to see a row?
	Slide 16: Want to know who the doctors are with brown hair?
	Slide 17: Want to know who the doctors are with brown hair?
	Slide 18: So far so good?
	Slide 19: Example of two tables
	Slide 20: Another way of looking at it
	Slide 21: Want to know which residents are working with brown haired doctors?
	Slide 22: Why won’t this work?
	Slide 23: Want to know which residents are working with brown haired doctors?
	Slide 24
	Slide 25: Aliases- a convenient abbreviation
	Slide 26: Enough theory, lets do some hands on
	Slide 27: show tables; This will display all the tables in OSCAR
	Slide 28
	Slide 29: describe {table};
	Slide 30: Lets ask some questions
	Slide 31: Let us find the patients older than 100!
	Slide 32: Let us filter out the 0000-00-00
	Slide 33: Lets only look at the active patients
	Slide 34: Doing Arithmetic with selected Information
	Slide 35: Want to find your oldest patient?
	Slide 36: Some more interesting searches…
	Slide 37: Now lets try using two tables…
	Slide 38: This works, but we want names….
	Slide 39: Now to the Cadillac of searches, “Report by Templates”
	Slide 40: Basic structure of a Report by template
	Slide 41: Param Types Examples
	Slide 42: LIST
	Slide 43: TEXT
	Slide 44: DATE
	Slide 45: So this is how the Disease Registry search would look:
	Slide 46: So this is how the Disease Registry search would look:
	Slide 47: So how do you load Report by Templates??
	Slide 48: Method 1: Standard upload
	Slide 49: Method 2: Overwriting existing template
	Slide 50: Wrap up
	Slide 51: The End

